If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+345t=621
We move all terms to the left:
4.9t^2+345t-(621)=0
a = 4.9; b = 345; c = -621;
Δ = b2-4ac
Δ = 3452-4·4.9·(-621)
Δ = 131196.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(345)-\sqrt{131196.6}}{2*4.9}=\frac{-345-\sqrt{131196.6}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(345)+\sqrt{131196.6}}{2*4.9}=\frac{-345+\sqrt{131196.6}}{9.8} $
| 2x+50=5x+38 | | 2(x-15)=30 | | 6x+29x-8=7(5x+5) | | 5/7x+28=8 | | -30=5x1−30=5(x+1) | | 4x+8x-1=3(4x+4) | | 305x1−30=5(x+1) | | -445=75x-820 | | 6.4g+9=4.4g+21 | | 174=42-x | | 2x+38=82 | | x-14=4x+31 | | -6x-145=8x+51 | | (4x-33)=(3x+12) | | -7x-44=16-3x | | -4x-33=12-7x | | -12-6x=14-4x | | x/2+x/3=x/4 | | 5-2(x+1)=9 | | -9+3x=4x+13 | | 2x-40=76 | | x^2.x=18+3x | | p+12=13 | | -9(u+3)=-2u+1 | | 1=1+3j | | x^2-16x=2 | | -3x-35=25+2x | | -19=19a | | 14x+18x=11(x+14) | | 3w-4=7(w+4) | | 5x-133=47-4x | | 2x+49=91 |